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Abstract—We present a scalable and efficient neural waveform
coding system for speech compression. We formulate the speech
coding problem as an autoencoding task, where a convolutional
neural network (CNN) performs encoding and decoding as a
neural waveform codec (NWC) during its feedforward routine.
The proposed NWC also defines quantization and entropy coding
as a trainable module, so the coding artifacts and bitrate
control are handled during the optimization process. We achieve
efficiency by introducing compact model components to NWC,
such as gated residual networks and depthwise separable con-
volution. Furthermore, the proposed models are with a scalable
architecture, cross-module residual learning (CMRL), to cover a
wide range of bitrates. To this end, we employ the residual coding
concept to concatenate multiple NWC autoencoding modules,
where each NWC module performs residual coding to restore
any reconstruction loss that its preceding modules have created.
CMRL can scale down to cover lower bitrates as well, for
which it employs linear predictive coding (LPC) module as its
first autoencoder. The hybrid design integrates LPC and NWC
by redefining LPC’s quantization as a differentiable process,
making the system training an end-to-end manner. The decoder
of proposed system is with either one NWC (0.12 million
parameters) in low to medium bitrate ranges (12 to 20 kbps) or
two NWCs in the high bitrate (32 kbps). Although the decoding
complexity is not yet as low as that of conventional speech codecs,
it is significantly reduced from that of other neural speech coders,
such as a WaveNet-based vocoder. For wide-band speech coding
quality, our system yields comparable or superior performance
to AMR-WB and Opus on TIMIT test utterances at low and
medium bitrates. The proposed system can scale up to higher
bitrates to achieve near transparent performance.

Index Terms—Neural speech coding, waveform coding, repre-
sentation learning, model complexity

I. INTRODUCTION

SPEECH coding can be implemented as an encoder-
decoder system, whose goal is to compress input speech

signals into the compact bitstream (encoder) and then to recon-
struct the original speech from the code with the least possible
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quality degradation. Speech coding facilitates telecommunica-
tion and saves data storage among many other applications.
There is a typical trade-off a speech codec must handle:
the more the system reduces the amount of bits per second
(bitrate), the worse the perceptual similarity between the
original and recovered signals is likely to be perceived. In
addition, the speech coding systems are often required to
maintain an affordable computational complexity when the
hardware resource is at a premium.

For decades, speech coding has been intensively studied
yielding various standardized codecs that can be categorized
into two types: the vocoders and waveform codecs. A vocoder,
also referred to as parametric speech coding, distills a set of
physiologically salient features, such as the spectral envelope
(equivalent to vocal tract responses including the contribution
from mouth shape, tongue position and nasal cavity), funda-
mental frequencies, and gain (voicing level), from which the
decoder synthesizes the speech. Typically, a vocoder operates
at 3 kbps or below with high computational efficiency, but the
synthesized speech quality is usually limited and does not scale
up to higher bitrates [1][2][3]. On the other hand, a waveform
codec aims to accurately reconstruct the input speech signal,
which features up-to-transparent quality in a high bitrate range
[4]. AMR-WB [5], for instance, can be seen as a hybrid
waveform codec, because it employs speech modeling as
in many other waveform codecs [6][7][8]. Enhanced Voice
Services (EVS) [9], a recently standardized 3GPP voice and
audio codec, has noticeably optimized frame error robustness,
yielding a much-enhanced frame error concealment perfor-
mance compared to AMR-WB [10]. Similar to EVS, Opus,
a waveform codec at its core, can also be applied to both
speech and audio signals where it uses the LPC-based SILK
algorithm for the speech-oriented model [11] and scales up to
510 kbps for transparent audio streaming and archiving.

Under the notion of unsupervised speech representation
learning, deep neural network (DNN)-based codecs have re-
vitalized the speech coding problem and provided different
perspectives [12][13]. The major motivation of employing
neural networks to speech coding is twofold: to fill the perfor-
mance gap between vocoders and waveform codecs towards a
near-transparent speech synthesis quality; to use its trainable
encoder and learn latent representations which may benefit
other DNN-implemented downstream applications, such as
speech enhancement [14][15], speaker identification [16] and
automatic speech recognition [17][18]. Having that, a neural
codec can serve as a trainable acoustic unit integrated in future
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TABLE I: Categorical summary of recently proposed neural
speech coding systems. " means the system supports the
feature while 7 does not. l means it is not known.

WaveNet [20] VQ-VAE [22] LPCNet [23] Proposed

Transparent coding " l 7 "

Less than 1M parameters 7 7 " "

Real-time communications 7 7 " "

Encoder trainable " " 7 "

digital signal processing engines [13].

Recently proposed neural speech codecs have achieved high
coding gain and reasonable quality by employing deep autore-
gressive models. The superior speech synthesis performance
achieved in WaveNet-based models [19] has successfully
transferred to neural speech coding systems, such as in [20],
where WaveNet serves as a decoder synthesizing wideband
speech samples from a conventional non-trainable encoder at
2.4 kbps. Although its reconstruction quality is comparable to
waveform codecs at higher bitrates, the computational cost is
significant due to the model size of over 20 million parameters.

Meanwhile, VQ-VAE [12] integrates a trainable vector
quantization scheme into the variational autoencoder (VAE)
[21] for discrete speech representation learning. While the
bitrate can be lowered by reducing the sampling rate 64
times, the downside for VQ-VAE is that the prosody can be
significantly altered. Although [22] provides a scheme to pass
the pitch and timing information to the decoder as a remedy, it
does not generalize to non-speech signals. More importantly,
VQ-VAE as a vocoder does not address the complexity issue
since it uses WaveNet as the decoder. Although these neural
speech synthesis systems noticeably improve the speech qual-
ity at low bitrates, they are not feasible for real-time speech
coding on the hardware with limited memory and bandwidth.

LPCNet [23] focuses on efficient neural speech coding
via a WaveRNN [24] decoder by leveraging the traditional
linear predictive coding (LPC) techniques. The input of the
LPCNet is formed by 20 parameters (18 Bark scaled cepstral
coefficients and 2 additional parameters for the pitch informa-
tion) for every 10 millisecond frame. All these parameters are
extracted from the non-trainable encoder, and vector-quantized
with a fixed codebook. As discussed previously, since LPCNet
functions as a vocoder, the decoded speech quality is not
considered transparent [1].

In this paper, we propose a novel neural speech coding
system, with a lightweight design and scalable performance.
First, we design a generic neural waveform codec with only
0.35 million parameters where 0.12 million parameters be-
long to the decoder. Compared to our previous models in
[25][26] where the decoder has 0.23 million parameters, the
current neural codec employs gated linear units to boost the
gradient flow during model training and depthwise separable
convolution to achieve further efficiency during decoding, as
detailed in Sec. II. Based on this neural codec, our full system
features two mechanisms to integrate speech production theory
and residual coding techniques in Sec. III. Benefited from

the residual-excited linear prediction (RELP) [27], we conduct
LPC and apply the neural waveform codec to the excitation
signal, which is illustrated in Sec.III-A. In this integration, a
trainable quantizer bridges the encoding of linear spectral pairs
and the corresponding LPC residual, making the speech coding
pipeline end-to-end trainable. We also enable residual coding
among neural waveform codecs to scale up the performance
for high bitrates (Sec.III-B). In summary, the proposed system
has following characteristics:

• Scalability: Similar to LPCNet [23], the proposed system
is compatible with conventional spectral envelope estima-
tion techniques. However, ours operates at a much wider
bitrate range with comparable or superior speech quality
to standardized waveform codecs.

• Compactness: The neural waveform codec in our system
is with a much lower complexity than WaveNet [19] and
VQ-VAE [12] based codecs. Our decoder contains only
0.12 million parameters which is 160× more compact
than a WaveNet counterpart. Our TensorFlow implemen-
tation’s execution time to encode and decode a signal is
only 42.44% of its duration on a single-core CPU in the
low-to-medium bitrates and 80.21% in the high bitrate,
facilitating real-time communications.

• Trainability: Our method is with a trainable encoder as in
VQ-VAE, which can be integrated into other DNNs for
acoustic signal processing. Besides, it is not constrained
to speech, and can be generalized to audio coding with
minimal effort as shown in [28].

TABLE I highlights the comparison to the other existing neural
speech codecs.

This paper is an extension of the authors’ previous con-
ference presentations [25][26], where some initial ideas were
already discussed. The new contributions presented this journal
version are listed as follows:

• Novel algorithmic enhancements: We propose new neural
network architectures to form a new baseline autoencoder
module and used it everywhere in our codecs. In our
previous works, we have used a 1D convolutional neural
network (CNN) that defines an autoencoder block with
an identity shortcut as in the ResNet architecture [29].
While this architecture has been effective, in this journal
paper, we propose to use the dilated gated linear units
and depthwise separable convolution to reduce the ker-
nel size without inducing any performance degradation.
Consequently, our NWC is defined by 0.35M parameters,
whose decoder part accounts for only 0.12M parame-
ters. Compared to our previous models that are already
small with only 0.45M parameters, the newly introduced
reduction amounts to 22.2%. If we only compare the
decoder parts, it is a 47.8% reduction. Although the
proposed architecture is more compact than our previ-
ous models or the WaveNet-based codecs, since neural
codecs’ complexity is much larger than the traditional
speech codecs, the additional model complexity reduction
with no degradation of performance is promising. The
architectural improvement are presented in Sec. II-A.
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• Extensive experimental validation: In our previous works,
the experimental validation was to prove the initial con-
cepts individually proposed each paper. In this time, we
conduct an extensive and thorough experiments to provide
the readers with a full view to the whole building-blocks
of the neural speech coding. To this end, we define four
candidate systems, from Model-I to IV, by incrementally
adding new modules, such as LPC, the trainable LPC
quantizer, and multiple concatenated neural autoencoders.
The objective and subjective tests validate each of these
additions in a full view (TABLE III and Fig. 7).

• Additional analyses and ablation tests: We also provide
detailed experimental validation for most of the claims
made in the paper by designing and performing separate
experiments, which were missing in the previous papers.

– Sec. IV-D1 provides experimental verification that
the proposed compact neural architecture does not
induce performance loss.

– Sec. IV-D2 presents a detailed analysis of the be-
havior of the cascaded autoendoers and the impact
of different training strategies.

– Sec. IV-F1 explores contribution of different loss
terms in our training objective by performing abla-
tion tests, and then proposes an optimal combination
of hyperparameters.

– Sec. IV-F2 also conducts an ablation test to empiri-
cally verify that the proposed trainable LPC quanti-
zation algorithm improves speech quality at the same
bitrate.

– Sec. IV-F3 and IV-F4 analyze the bit allocation
behavior among the different submodules. Since the
bit allocation strategy is decided by the learning
algorithm, these analyses provide evidence that our
models dynamically adapt to the characteristics of
the signals given the limited bit budget.

– Sec. IV-G presents additional analyses on compu-
tational complexity and execution time ratios to
discuss the potential of the neural codecs in real-time
applications.

– Last but not least, in Sec. IV-G3 we discuss the
implementation issues and the limitations of the pro-
posed system in the context of real-world application
scenarios.

II. END-TO-END NEURAL WAVEFORM CODEC (NWC)

The neural waveform codec (NWC), is an end-to-end au-
toencoder that forms the base of our proposed coding systems.
NWC directly encodes the input waveform x ∈ RT using
a convolutional neural network (CNN) encoder Fenc(·), i.e.,
h ← Fenc(x). Then, the quantization process Q(·) converts
the encoding into a bitstring h̃ ∈ RN , which is followed
by lossless data compression and bitstream transmission. On
the receiver side, the decoder reconstructs the waveform as
x ≈ x̂ ← Fdec(h̃). Fig. 1 (a) depicts NWC’s overall system
architecture. The structure is detailed in TABLE II. It serves
as a basic component in the proposed speech coding system
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Leaky ReLU activation map: 
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Reshape

50

512
Upsampled result:
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(c) Depthwise separable 1D convolution for upsampling

Fig. 1: The proposed architecture for lightweight NWC.

in Sec. III. In this section, we first introduce the architectural
improvement that reduced our model’s complexity. Next, we
also introduce two strategies that compress the signals: feature
map compression and trainable quantization.
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A. The Improved Architecture for NWC

We propose two different kinds of structural modification
to reduce the model’s overall complexity compared to other
NWC models including our prior works [25], [26].

First, both encoder and decoder adopt gated linear units
(GLU) [30]. We also define the GLU’s convolution with
dilation [31] to expand the receptive field in the time domain,
which is a scheme that showed promising performance in
speech enhancement [32]. Fig. 1 (b) shows our dilated GLU
module. It first reduces the channel from 100 to 20 using
a unit-width kernel. Then, two separate dilated convolution
layers are applied to produce two feature maps, one of which
goes through a sigmoid activation. Hence, the Hadamard
product of the two feature maps can be seen as a gated
version of the linear feature map. It is known that this gating
mechanism in the middle boosts the gradient flow thanks to
the linear path that does not involve the gradient vanishing
issue. The final result is a mixture of the input and the last
feature map, turning this block into a residual learning function
as proposed in ResNet [29]. This kind of architecture shows
superior performance as evidenced in [30], [33].

Our encoder reduces the data rate by using a “down-
sampling” convolutional layer, whose “stride” parameter is
set to be 2. As a counterpart, the decoder’s “upsampling”
layer makes up the loss. More details about this down and
upsampling operations will be discussed in Sec. II-B. In this
subsection, we focus on the actual module that performs
the upmixing, where we introduced additional reduction in
complexity. Out of various choices, we employ the depthwise
separable convolution [34] to further save the computational
cost (Fig. 1 (c)). For example, to transform a feature map of
size 256× 100 (features, channels) into its upsampled version
of size 512 × 50, we first perform depthwise convolution
using a c × 1 kernel. In our system c = 9. Since the
depthwise convolution applies to each channel separately, we
eventually need 100 such kernels. It is a reduction of model
complexity, because a normal convolution requires a kernel of
size c×100×100 (features, input channels, output channels),
which is 100 time larger. In depthwise separable convolution,
another 1 × 1 convolution follows to add more nonlinearity,
for which we need a 1× 100× 100 kernel. In our case, it is
easy to show that c× 100× 100 > c× 100+100× 100 when
the integer c > 1. For example, when c = 9, it is a reduction
of about 88% of parameters.

Likewise, the proposed NWC is lightweight with only
0.35 million parameters, which is a reduction of 0.1 million
parameters compared to our previous works [25][26]. The
reduction comes from the streamlined upsampling operation
implemented via the depthwise separable convolution. Even-
tually, the decoder accounts for 0.12 million parameters out
of 0.35.

B. Feature Map Compression

One way to compress the input signal in the proposed
encoder architecture is to reduce the data rate. The CNN

TABLE II: Architecture of the neural waveform codec: input
and output tensors are shaped as (sample, channel), while the
kernel is represented as (kernel size, in channel, out channel).

Layer Input shape Kernel shape Output shape

E
nc

od
er

Channel
Expansion (512, 1) (55, 1, 100) (512, 100)

Gated
Linear
Unit

(512, 100)

(1, 100, 20) ×2(15, 20, 20)†

(15, 20, 20)†
(9, 20, 100)

(512, 100)

Downsampling (512, 100) (9, 100, 100) (256, 100)

Gated
Linear
Unit

(256, 100)

(1, 100, 20) ×2(15, 20, 20)†

(15, 20, 20)†
(9, 20, 100)

(256, 100)

Channel
Reduction (256, 100) (9, 100, 1) (256, 1)

D
ec

od
er

Channel
Expansion (256, 1) (9, 1, 100) (256, 100)

Gated
Linear
Unit

(256, 100)

(1, 100, 20) ×2(15, 20, 20)†

(15, 20, 20)†
(9, 20, 100)

(256, 100)

Upsampling (256, 100) (9, 100, 1)
(1, 100, 100) (512, 50)

Gated
Linear
Unit

(512, 50)

(1, 50, 20) ×2(15, 20, 20)†

(15, 20, 20)†
(9, 20, 50)

(512, 50)

Channel
Reduction (512, 50) (55, 50, 1) (512, 1)

encoder function takes an input frame, x ∈ RT , and converts
it into a feature map h ∈ RN ,

h← Fenc(x), (1)

which then goes through quantization, transmission, and de-
coding to recover the input as shown in Fig. 1 (a). During
the encoding process, we introduce a downsampling operation,
reducing the dimension of the code vector h. We employ a
dedicated downsampling layer by setting up the stride value to
be 2 during its convolution, reducing the data rate by 50%, i.e.,
N = T/2. Accordingly, the decoder needs a corresponding
upsampling operation to recover the original sampling rate.
We use subpixel CNN layer proposed in [35] to recover the
original sampling rate. Concretely, the subpixel upsampling
involves a feature transformation implemented in depthwise
convolution, and a shuffle operation that interlaces features
from two channels into a single channel, as shown in Eq. (2),
where the input feature of the shuffle operation is shaped as
(N , 2) and the output is shaped as (2N , 1).

[h11, h21, h12, h22, . . . , h1N , h2N ]

← Upsampling([h11, h12, . . . , h1N ;h21, h22, . . . , h2N ]
(2)
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C. The Trainable Quantizer for Bit Depth Reduction

The dimension-reduced feature map can be further com-
pressed via bit depth reduction. Hence, the floating-point code
h goes through quantization and entropy coding, which will
finalize the bitrate based on the entropy of the code value
distribution. Typically, a bit depth reduction procedure lowers
the average amount of bits to represent each sample. In our
case, we could employ a quantization process that assigns the
output of the encoder to one of the pre-defined quantization
bins. If there are 25 = 32 quantization bins, for example, a
single-precision floating-point value’s bit depth reduces from
32 to 5. In addition, various entropy coding techniques, such
as Huffman coding, can be further employed to losslessly
reduce the bit depth. While the quantization could be done
in a traditional way, e.g., using Lloyds-Max quantization [36]
after the neural codec is fully trained, we encompass the
quantization step as a trainable part of the neural network as
proposed in [37]. Consequently, we expect that the codec is
aware of the quantization error, which the training procedure
tries to reduce it. It is also convenient to control the bitrate by
controlling the entropy of the code value distribution, which
can be also done as a part of network training.

In NWC, the quantization process is represented as classi-
fication on each scalar value of the encoder output. Given
a vector with K centroids, β = [β1, β2, · · · , βK ]>, the
quantizer’s goal is to assign each feature hn to the closest
centroid in terms of `2 distance, which is defined as follows:

D =



||h1 − β1||2 · · · ||h1 − βK ||2

...
. . .

...
||hN − β1||2 · · · ||hN − βK ||2


 , (3)

where n-th row in D is a vector of `2 distance between n-th
code value hn to all K quantization bins. Then, we employ the
softmax function to turn each row of D into a K-dimensional
probabilistic assignment vector:

A(soft) =




softmax(−αD1:)
softmax(−αD2:)

...
softmax(−αDN :)


 , (4)

where we turn the distance into a similarity metric by multi-
plying a negative number −α, such that the shortest distance is
converted to the largest probability. In our implementation, β
is initialized as a vector of K = 32 uniformly spaced numbers
within the interval of [−1, 1]. As for α, we begin with a large
enough number 300. Both α and β are trainable parameters
to optimize the quantization process.

Note that Eq. (4) yields a soft assignment matrix A(soft) ∈
RN×K . In practice, though, the quantization process must per-
form a hard assignment, so each code value hn is replaced by
an integer index to the closest centroids: zn ∈ {1, 2, · · · ,K},
which is represented by dlog2Ke bits as the quantization
result. The hard kernel assignment matrix A(hard), where
each row is a one-hot vector, can be induced by turning on

Algorithm 1 Soft-to-hard quantization during inference,
Q(h, α,β)

1: Input: the code, e.g., the encoder output, h = Fenc(x)
the trained softmax scaling factor, α
the trained centroid vector, β ∈ RK

2: Output: the quantized code, ĥ (training) or h̃ (testing)
3: Compute the dissimilarity matrix: Dnk ← `2(hn||βk)
4: Softmax conversion: A(soft)

n: ← Softmax(−αDn:)
5: if Training then
6: Soft quantization: ĥ← A(soft)β
7: else if Testing then
8: Hard quantization: h̃← A(hard)β
9: end if

the maximum element of A(soft) while suppressing the non-
maximum:

A(hard)
nk =

{
1 if argmaxj∈{1,2,··· ,K}A

(soft)
nj = k

0 otherwise
(5)

On the decoder side, h̃ = A(hard)β recovers h.

Since argmax operation in Eq. (5) is not differentiable, a
soft-to-hard scheme is proposed in [37], where A(hard) is used
only at test time. During backpropagation for training, the soft
classification mode is enabled with A(soft) so as not to block
the gradient flow. In other words, ĥ = A(soft)β represents each
encoder output with a linear combination of all quantization
bins. The process is summarized in Algorithm 1. Although this
soft quantization process is differentiable and desirable during
training, the discrepancy between A(soft) and A(hard) creates
higher error during the test time, requiring a mechanism to
reduce the discrepancy as in the following section.

1) Soft-to-hard quantization penalty: Although the limit of
A(soft) is A(hard) as α approaches ∞, the change of α should
be gradual to allow gradient flows in the initial phase of
training. We control the hardness of A(soft) using the soft-
to-hard quantization loss derived from [38]:

LQ =
1

N

∑

n,k

√
A(soft)

nk , (6)

whose minimum, 1, is achieved when A(soft)
n: is a one-hot

vector for all n. Conversely, when A(soft)
nk = 1/K, the loss is

maximum. Hence, by minimizing this soft-to-hard quantiza-
tion penalty term, we can regularize the model to have harder
A(soft) values by updating α and the other model parameters
accordingly. As a result, the test time quantization loss will
be reasonably small when A(soft) is replaced by A(hard).

2) Bitrate calculation and entropy control: The bitrate is
calculated as a product of the number of code values per
second and the average bit depth for each code. The former
is defined by the dimension of the code vector N multiplied
by the number of frames per second, F

T−o , where T , o, and
F are the input frame size, overlap size, and the original
sampling rate, respectively. If we denote the average bit depths
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per sample by a function g(h̃n), the bitrate can be computed
as in Eq. (7),

bitrate = g(h̃n)NF/(T − o). (7)

When F = 16, 000, T = 512, o = 32, and N = 256 after
downsampling, for example, there are about 8, 533 samples
per second. If g(h̃n) = 3 bits, the bitrate is estimated as 25.6
kbps. In contrast, the uncompressed bitrate is 256 kbps with
N = T = 512, o = 0, and g(xt) = 16 bits for each sample.

We alter the entropy of β to adjust the codec’s bitrate, since
the entropy serves as the lower bound of g(h̃n) based on
Shannon’s entropy theory. The entropy, H(β), is estimated
with the sample distribution,

H(β) ≈ −
K∑

k=1

p(βk) log2 p(βk), (8)

where p(βk) = 1
N

∑
nA

(hard)
nk is the relative frequency of the

k-th centroid being chosen during quantization. To navigate
the model training towards the target bitrate, H(β) defined
in Eq. (8) is included in the loss function as a regularizer:
if the current bitrate is higher than desired, the optimization
process will increase the blending weight of the regularizer to
strengthen the regularization effect, which consequently lowers
the entropy, and vice versa. More details on the training target
and hyperparameter setting are discussed in Sec. IV-B.

III. NWC-BASED SPEECH CODING SYSTEMS

By having NWC introduced in Sec. II as the basic module,
we propose two different extension mechanisms to improve
the codec’s performance in a wider range of bitrates, without
increasing the model complexity significantly. First, in Sec.
III-A, we propose a neural network compatible LPC module
where the trainable soft-to-hard quantization is applied to
the LPC coefficients. With the LPC module followed by an
NWC module, we achieve a win-win strategy that fuses the
traditional DSP technique and the modern deep learning model
[26]. In addition to integrating LPC, our neural codec conducts
multistage residual coding [25] by cascading residuals among
multiple NWC modules (Sec. III-B). The proposed CMRL
system relays residual signals among the series of NWCs to
scale up the coding performance at high bitrates.

A. Trainable LPC Analyzer

LPC has been widely used to facilitate speech compression
and sysnthesis, where source-filter model “explains out” the
envelope of a speech spectrum, leaving a low-entropy residual
signal [39]. Similarly, LPC serves as a pre-processor in our
system before its residual signal being compressed by NWC
as we will see in Sec. III-B. In this subsection, we redesign the
LPC coefficient quantization process as a trainable module. We
introduce collaborative quantization (CQ) to jointly optimize
the LPC analyzer and NWCs as a residual coder.

High-pass filter

Input Speech Frame

Pre-emphasis filter

Calculate LPC 
coefficients

Neural LPC 
coefficients 
quantization

Calculate LPC 
residuals

Residual Frame

Coded LPC
Coefficients

(for regularization)

<latexit sha1_base64="OT7e6gC7VPz9cC/hcCbNc1FF1yM="></latexit>

A(LPC)

(a) The trainable LPC analyzer where the linear spectral pairs
are quantized by our trainable soft-to-hard quantizer (in the
dotted box).

10241 257 512 768481 737 1248 1504

(b) Cross-frame windowing

257 768512

(c) Sub-frame windowing

257 768512 737 1217 1248

(d) Synthesis windowing

Fig. 2: The signal flow chart for LPC analyzer (a) and
windowing schemes in LPC (b)-(d).

1) Speech resonance modeling: In the speech production
process, the source as wide-band excitation signals go through
the vocal tract tube. The shape-dependent resonances of the
vocal tract filter the excitations before it being transformed
to speech signals [40]. In speech coding, the “vocal tract re-
sponse” is often modeled as an all-pole filter [41]. Having that,
the t-th sample xt can be approximated by a autoregressive
model using M previous samples,

xt =

M∑

k=1

lkxt−k + et, (9)

where the estimation error et represents the LPC residual,
and lk denotes the filter coefficients. Typically, lk can be
efficiently estimated via Levinson-Durbin algorithm [42], and
are to be quantized before LPC residual is calculated, i.e.,
et encompasses the quantization error. The LPC residual et
serves as input to the NWC module, which works as explained
in Sec. II, but on e rather than x. Hence, how LPC coefficients
are quantized determines NWC’s input, the LPC residual.

2) Collaborative quantization: The conventional LPC coef-
ficient quantization process is standardized in ITU-T G.722.2
(AMR-WB) [43]: 2.4k bits are assigned to represent the LPC
coefficient per second though multistage vector quantization
(MSVQ) [44] in a classic LPC analyzer. Once again, we
employ the soft-to-hard quantizer as illustrated in Sec. II to
make the quantization and bit allocation steps in the LPC
analyzer trainable and communicatable with the neural codec.

We compute the LPC coefficients as in [5], first by applying
high-pass filtering followed by pre-emphasizing (Fig. 2 (a)).
When calculating LPC coefficients, the window in Fig. 2 (b)
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is used. The window is symmetric with the left and right
25% parts being tapered by a 512-point Hann window. After
representing the 16 LPC coefficients in linear spectral pairs
(LSP) [45], we quantize it using the soft-to-hard quantization
scheme. Then, the sub-frame window in Fig. 2 (c) is applied
to calculate LPC residual, which assures a more accurate
residual calculation. The frame that covers samples [256:768],
for instance, is decomposed into 7 sub-frames to calculate LPC
residuals separately. Each 128-point Hann window in Fig. 2
(c) is with 50% overlap, except for the first and last window.
They altogether form a constant overlap-add operation. Finally,
after the synthesis using the reconstructed residual signal and
corresponding LPC coefficients, the window in Fig. 2 (d) ta-
pers both ends of the synthesized signal, covering 512 samples
with 32 overlapping samples between adjacent windows.

As an intuitive example, given the samples [1:1024] as the
input, after the LPC analysis, neural residual coding, and LPC
synthesis, samples [257:768] are decoded; the next input frame
is [481:1504] (the dotted window in Fig. 2 (b)), whose decoded
samples are within [737:1248]. The overlap-add operation is
applied to the final decoded samples [737:768] (Fig. 2 (d)).

During this process, the calculated LPC coefficients are
quantized using Algorithm 1, where the code vector is with
16 dimensions, i.e., h ∈ R16. The number of kernels is set
to be K = 28 = 256. Note that the soft assignment matrix
for the LPC quantization, A(LPC), is also involved in the loss
function to regularize the bitrate.

We investigate the impact of the trainable LPC quantization
in collaboration with the rest of the NWC modules in Sec. IV.

B. Cross-Module Residual Learning (CMRL)

To achieve scalable coding performance towards trans-
parency at high bitrates, we propose cross-module residual
learning (CMRL) to conduct bit allocation among multiple
neural codecs in a cascaded manner. CMRL can be regarded
as a natural extension of what is described in Sec. III-A, where
the LPC as a codec conducts the first round of coding by only
modeling the spectral envelope. It leaves the residual signal for
a subsequent NWC to be further compressed. With CMRL, we
employ the concept of residual coding to cascade more NWCs.
We also present a dual-phase training scheme to effectively
train the CMRL model.

CMRL’s scalability comes from its residual coding con-
cept that enables a concatenation of multiple autoencoding
modules. We define the residual signal recursively: i-th codec
takes the residual of its predecessor as input, and the i-th
reconstruction creates another residual for the next round, and
so on. Hence, we have

x̂(i) ← F (i)(x(i)), x(i) ← x(i−1)− x̂(i−1), x(1) ← x, (10)

where x̂(i) stands for the reconstruction of the i-th input using
the i-th coding module F (i)(·), while the input to the first
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Fig. 3: The flow diagram of the test-time inference.

codec is defined by the raw input frame x. If we expand the
recursion, we arrive at the non-recursive definition of x(i),

x(i) = x−
i−1∑

j=1

x̂(j), (11)

which means the input to i-th model is the residual of the sum
of all preceding i− 1 codecs’ decoded signals. It ensures the
additivity of the entire system: adding more modules keeps
improving the reconstruction quality. Hence, CMRL can scale
up to high bitrates at the cost of increased model complexity.

CMRL is optimized in two phases. During Phase-I training,
we sequentially train each codec from the first to the last one
using a module-specific residual reconstruction goal,

E(x(i)||x̂(i)). (12)

The purpose for Phase-I training is to get parameters for
each codec properly initialized. Then, Phase-II finetunes all
trainable parameters of the concatenated modules to minimize
the global reconstruction loss,

E
(
x

∣∣∣∣
∣∣∣∣

N∑

i=1

x̂(i)

)
. (13)

The reconstruction loss measures the waveform discrepancy
in both time and frequency domains. Quantization penalty
and entropy control are introduced as regularizers. Sec. IV-B
details the definition of the training target and ablation tests
on how to find the optimal blending weights between the loss
terms.

C. Signal Flow during Inference

Fig. 3 shows the full system signal flow with N sub-codecs,
having an LPC module as the first one. On the transmitter side
the LPC analyzer first processes the input frame x of 1024
samples and computes 16 coefficients, h(1), as well as 512
residual samples x(2) at the center of the frame. Then, the
residual signal goes through the N −1 NWCs in sequentially.
Note that the transmission process’s primary job is to produce
a quantized bitstring h̃(i) from LPC and each NWC. To
this end, NWC’s decoder part must also run to compute the
residual signal and relay it to the next NWC module. The
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bitstring is generated as a concatenation of all encoder outputs:
h̃ =

[
h̃(1); h̃(2); · · · ; h̃(N)

]
. Once the bitstring is available on

the receiver side, all NWC decoders run to reconstruct the
LPC residual signal, i.e., x̂(2) ≈ ∑N

i=2 F
(i)
dec(h̃

(i)). Then it is
used as input of the LPC synthesizer, along with the LPC
coefficients.

IV. EVALUATION

In this section, we examine the proposed neural speech
coding model presented in Sec.II and III. The evaluation critera
include both objective measures such as PESQ [46] and signal-
to-noise ratio (SNR) and subjective scores from MUSHRA
listening tests [47]. In addition, we conduct ablation analysis
to provide a detailed comparison between various loss terms
and bit allocation schemes. Finally, we report the system delay
and execution time under four hardware specifications.

A. Data Processing

The training dataset is created from 300 speakers randomly
selected from the TIMIT corpus [48] with no gender prefer-
ence. Each speaker contributes 10 utterances totaling 2.6 hour-
long training set, which is a reasonable size due to our compact
design. The same scheme is adopted when creating the valida-
tion dataset and test dataset with 50 speakers, respectively. All
three datasets are mutually exclusive with the sample rate of 16
kHz. All neural codecs in this work are trained and tested via
the same set of data for a fair comparison. We normalize each
utterance to have a unit variance, then divided by the global
maximum amplitude, before being framed into segments with
the size of 512 samples. On the receiver side, we conduct
overlap-and-add after the synthesis of the frames, where a 32-
sample Hann window is applied to the overlapping region of
the same size.

With the LPC codec, we apply high-pass filtering defined
in the z-space, Ghp(z)=

0.989502−1.979004z−10.989502z−2

1−1.978882−10.979126−2 ,
to the normalized waveform. A pre-emphasis filter,
Gpreemp(z)=1−0.68z−1, follows to boost the high frequencies.

B. Training Targets and Hyperparameters

The loss function is defined as

L = λMSE

T∑

t=1

(xt − x̂t)2 + λmel

4∑

b=1

Fb∑

f=1

(
y
(b)
f − ŷ

(b)
f

)2

+ λQLQ + λentH(β)
(14)

where the first term measures the mean squared error (MSE)
between the raw waveform samples and their reconstruction.
Ideally, if the model complexity and the bitrate is sufficiently
large, an accurate reconstruction is feasible by using MSE
as the only loss function. Otherwise, the result is usually sub-
optimal due to the lack of bits: coupled with the MSE loss, the
decoded signals tend to contain broadband artifact. The second
term supplements the MSE loss and helps suppress this kind of
artifact. To this end, we follow the common steps to conduct
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Fig. 4: The coarse-to-fine filter bank analysis in the mel scale.

mel-scaled filter bank analysis, which results in a mel spectrum
y that has a higher resolution in the low frequencies than in the
high frequencies. The filter bank size defines the granularity
level of the comparison. Following [38], we conduct a coarse-
to-fine filter bank analysis by setting four filter bank sizes,
F1 = 8, F2 = 16, F3 = 32, F4 = 128 as shown in Fig. 4,
which result in four kinds of resolutions for mel spectra y(b)

indexed by b ∈ {1, 2, 3, 4}.
All models are trained on Adam optimizer with default

learning rate adaptation rates [49]. The batch size is fixed
with 128 frames . The initial learning rate is 2 × 10−3 for
the first neural codec. With CMRL, the learning rate for the
successive neural codecs is 2× 10−4. Finetuning of all those
models is with a smaller learning rate 2 × 10−5. All models
are sufficiently trained until the validation loss converges after
being exposed to about 5×105 batches. These hyperparameters
were chosen based on validation.

The blending weights in the loss function in Eq. (14) are
also selected based on the validation performance. Empiri-
cally, the ratio between the time-domain loss and mel-scaled
frequency loss affects the trade-off between the SNR and
perceptual quality of decoded signals. If the time-domain loss
dominates the optimization process, the model compresses
each sub-band with an equal effort. In that case, the artifact
will be audible unless the SNR reaches a rather high level (over
30 dB) which entails a high bitrate and model complexity. On
the other hand, if only the mel-scaled frequency loss is in
place, the reconstruction quality in the high frequency will
degrade. The impact of these blending weights for these two
loss terms is detailed in Sec. IV-F via an ablation analysis.

The weights for the quantization regularizer λQ and entropy
regularizer λent are initially set to be 0.5 and 0.0, respectively.
As for λent, we alter it after every epoch by 0.015: if the current
model’s bitrate is higher than the target bitrate, λent increases
to penalize the model’s entropy more; otherwise, λent decreases
to boost the entropy. Note that we omit the module index i in
Eq. (14), so the meaning of x̂t depends on the context: either
the module-specific reconstruction as in Eq. (12) or the sum
of all recovered residual signals for Phase-II finetuning as in
Eq. (13). Similarly, LQ and Hβ can encompass all modules’
quantization and entropy losses including LPC’s for Phase-II.
We delay the introduction of the quantization and entropy loss
until the fifth epoch.

C. Bitrate Modes and Competing Models

We consider three bitrates, 12, 20, and 32 kbps, to validate
models’ performance in a range of use cases. We evaluate
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following different versions of neural speech coding systems:

• Model-I: The NWC baseline (Sec. II).
• Model-II: Another baseline that combines the legacy LPC

and an NWC module for residual coding.
• Model-III: A trainable LPC quantization module followed

by an NWC and finetuning (Sec. III-A);
• Model-IV: Similar to Model-III but with two NWC mod-

ules: the full-capacity CMRL implementation (Sec.III-B).
It is tested cover the high bitrate case, 32 kbps.

Regarding the standard codecs, AMR-WB [5] and Opus [50]
are considered for comparison. AMR-WB, as an ITU standard
speech codec, operates in nine different modes covering a
bitrate range from 6.6 kbps to 23.85 kbps, providing excellent
speech quality with a bitrate as low as 12.65 kbps in wideband
mode. As a more recent codec, Opus shows the state-of-the-art
performance in most bitrates up to 510 kbps for stereo audio
coding, except for the very low bitrate range.

We first compare all models with respect to the objective
measures, while being aware that they are not consistent with
the subjective quality. Hence, we also evaluate these codecs
in two rounds of MUSHRA subjective listening tests: the
neural codecs are compared in the first round, whose winner
is compared with other standard codecs in the second round.

D. Objective Measurements

1) The compact NWC module and its performance: Com-
pared to our previous models in [25][26] that use 0.45 million
parameters, the newly proposed NWC in this work only has
0.35 million parameters. It is also a significant reduction from
the other compact neural waveform codec [38] with 1.6 million
parameters. As introduced in Sec. II the model size reduction
is achieved via the GLU [33] and depthwise separable convo-
lution for upsampling [34]. In our first experiment, we show
that the objective measures stay the same. Fig. 5 compares
the NWC modules before and after the structural modification
proposed in Sec. II in terms of (a) signal-to-noise ratio (SNR)
and (b) PESQ-WB [46]. We can see that the newly proposed
model with 0.35M parameters is comparable to the larger
model. Therefore, it justifies its use as the basic module in
a range of models from Model-I to IV.

2) The impact of CMRL’s residual coding: To validate the
merit of CMRL’s residual coding concept, we scale up the
CMRL model by incrementally adding more NWC modules up
to five. In Fig. 6, both SNR and PESQ values keep increasing
when CMRL keeps adding a new NWC module. There are two
noticeable points in these graphs. First, the greedy module-
wise pretraining is important for the performance: whenever a
new model is added, it is pretrained to minimize the module
specific loss Eq. (12) first (Phase-I), then the global loss Eq.
(13), subsequently (Phase-II). A model that does not perform
Phase-II (thick gray line) stagnates no matter how many NWCs
are added. Second, we also train a very large NWC model with
the same amount of parameters as CMRL with five NWCs
combined (grey dash). It turns out the equally large model
fails to scale up due to its single integrated architecture. While
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Fig. 5: Speech reconstruction performance stays almost the
same when the model size decreases from 0.45 to 0.35 million
parameters with the help from the structural modification.

we eventually decide to use only up to two NWCs for speech
coding for our highest bitrate case, 32 kbps, we may keep
adding NWCs to CMRL to meet the case of higher bitrates
for non-speech audio coding.

3) Overall objective comparison of all competing models:
TABLE III reports SNR and PESQ-WB from all competing
systems. AMR-WB in the low-range bitrate setting operates at
12.65 kbps and 23.05 kbps for the mid-range. Among neural
speech coding systems, Model-I, as a single autoencoder
model, outperforms others in all three bitrate setups in terms of
SNR and PESQ-WB. It is also comparable to AMR-WB and
Opus, except for the low bitrate case where Opus achieves the
highest PESQ score. One explanation is that Model-I is highly
optimized for the objective loss during training, although it
does not necessarily mean that the higher objective score leads
to a better subjective quality as presented in Sec. IV-E. It is
also observed that with CQ, Model-III gains slightly higher
SNR and PESQ scores compared to Model-II, which uses the
legacy LPC. Finally, the performance scales up significantly
when Model-IV starts to employ two NWCs on top of LPC,
which is our proposed full neural speech coding setup. Aside
from objective measure comparison, to further evaluate the
quality of proposed codec, we discuss the subjective test in
the next section.

E. Subjective Test

We conduct two rounds of MUSHRA tests: (a) to select
the best one out of the proposed models (from Model-I to IV)
(b) to compare it with the standard codecs, i.e., AMR-WB and
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TABLE III: Objective measurements for neural codec comparison under three bitrate cases.

Bitrate SNR (dB) PESQ-WB
(kbps) Model-I Model-II Model-III Model-IV AMR-WB Opus Model-I Model-II Model-III Model-IV AMR-WB Opus

∼12 12.37 10.69 10.85 – 11.60 9.63 3.67 3.45 3.60 – 3.92 3.93
∼20 16.87 10.73 13.65 – 13.14 9.46 4.37 3.95 4.01 – 4.18 4.37
∼32 20.24 11.84 14.46 17.11 – 17.66 4.42 4.15 4.18 4.35 – 4.38

0 15 30 45 60 75
Training Steps (k)

10

15

20

25

30

35

40

SN
R 

(d
B)

CMRL-base
CMRL-2
CMRL-3
CMRL-4
CMRL-5
CMRL-5
Non-Greedy
Non CMRL

(a) Scalability with respect to SNR

0 15 30 45 60 75
Training Steps (k)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

PE
SQ CMRL-base

CMRL-2
CMRL-3
CMRL-4
CMRL-5
CMRL-5
Non-Greedy
Non CMRL

(b) Scalability with respect to PESQ

Fig. 6: In CMRL, performance leaps when the new neural
codec is added for residual cascading. In these CMRL models
LPC is not used.

Opus. Each round covers three different bitrate ranges, totaling
six MUSHRA sessions. A session consists of ten trials, for
which ten gender-balanced test signals are randomly selected.
Each trial has one low-pass filtered signal serving as the anchor
(with a cutoff frequency at 4kHz), the hidden reference, as
well as signals decoded from competing systems. We recruit
ten participants who are audio experts with prior experiences
in speech/audio quality evaluation. The subjective scores are
rendered in Fig. 7 as boxplots. Each box ranges from the 25 to
75 percentile with a 95% confidence interval. The mean and
median are presented as the green dotted line and pink hard
line, respectively. Outliers are represented in circles.

1) Comparison among the proposed neural codecs: In Fig.
7 (a) we see that Model-III’s produces decoding results that
are much more preferred than both Model-I and Model-
II, which are a pure end-to-end model and with the non-
trainable legacy LPC module, respectively. The advantage is
more noticeable in lower bitrates. It is contradictory to the
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(a) Neural waveform codecs comparison.
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Fig. 7: MUSHRA subjective listening test results.

objective scores reported in TABLE III where Model-I often
achieves the highest scores. Compared to the deterministic
quantization component in the legacy LPC in Model-II, LPC
module and NWC in Model-III are jointly trained for a frame-
wise independent bit allocation, so as to maximize the coding
efficiency. We also note that Model-III’s performance stagnates
in the high bitrate experiments, suggesting its poor scalability.
To this end, for the high bitrate experiment, we additionally
test Model-IV with two NWC residual coding modules instead
of just one. Model-IV outperformed both Model-II and Model-
III by a large margin, showcasing a near-transparent quality.

2) Comparison with standardized codecs: Fig. 7 (b) shows
that, our Model-II is on par with AMR-WB for the low-range
bitrate case, while outperforming Opus which tends to lose
high frequency components. In the medium-range, Model-II
at 19.2 kbps is comparable to Opus at 20.0 kbps and AMR-
WB at 23.05 kbps. In the high bitrate range, our Model-IV
outperforms Opus that operates 32 and 24 kbps, while AMR-
WB is omitted as it does not support those high bitrates.

All MUSHRA sessions are available online, along with
demo samples and source codes1.

1https://saige.sice.indiana.edu/research-projects/hybrid-neural-speech-
coding
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TABLE IV: Ablation analysis on blending weights.

(a) Model-I (a neural codec only)

Blending Ratio (MSE : mel) Decoded SNR (dB) Decoded PESQ

1 : 0 18.12 3.67
0 : 1 0.16 4.23
1 : 1 6.23 4.31
10 : 1 16.88 4.37

(b) Model-III (a neural codec with a collaboratively trained LPC)

Blending Ratio Residual SNR Decoded SNR Decoded PESQ
(MES : mel) (dB) (dB)

1 : 0 9.73 14.25 3.84
0 : 1 1.79 17.23 4.02
1 : 1 7.11 17.82 4.08
10 : 1 8.26 17.55 4.01

F. Ablation Analysis

In this section, we perform some ablation analyses to justify
our choices that led to CQ and CMRL’s superior subjective test
results. We investigate how different blending ratios between
loss terms can alter the performance. We will also explore the
optimal bit allocation strategy among coding modules.

1) Blending weights for the loss terms: Out of the two
reconstruction loss terms, MSE serves as the main loss for the
end-to-end NWC system, while the mel-scaled loss prioritizes
certain frequency bands over the others. We perform ablation
analysis on four blending ratio settings to analyze their effect
on decoded speech’s objective quality. We consider both
system configurations: one with only the neural waveform
codec (TABLE IV (a)) and the other one with both the neural
waveform codec and collaboratively trained LPC module
(TABLE IV (b). For TABLE IV (a), the target entropy for
each sample in the neural codec is of 2.5-bit, corresponding
to a bitrate of 512−32

16000∗1024 ∗ 256 ∗ 2.5 ≈ 21.3 kbps. The SNR
reaches the highest when there is only the MSE term, while
the PESQ score becomes the lowest. By only keeping the mel-
scaled loss term, the PESQ score is decent (4.23), yet with a
poor waveform reconstruction as suggested by the SNR value
(0.16 dB). For TABLE IV (b), the target entropy for each LPC
coefficient is of 5-bit or 2.6 kbps, and 3.5-bit for each LPC
residual sample or 29.9 kbps. Similarly, even with the input of
the neural codec being the LPC residuals, MSE alone yields
the highest SNR for the reconstruction of the LPC residual, but

it does not benefit the final synthesized signal even in terms
of SNR. Note that we choose 128 quantization centroids for
the high bitrate case, which is different from that of Model-III
in TABLE III where 32 quantization centroids are employed.
For consistency’s sake, we choose the blending ratio of 10 : 1,
which shows reasonably well numbers in all proposed models.

2) CQ’s impact on the speech quality: We compare the
PESQ values of the decoded signals from Model II and III.
Since Model-III shares the same architecture with Model-II
except for the CQ training strategy, the comparison is to verify
that CQ can effectively allocate bits to the LPC and NWC
modules. Fig. 8 shows that the total entropy of the two models
are under the control regardless of the use of CQ mechanism.
However, we can see that Model-III with CQ achieves higher
PESQ during and after the control of the entropy, showcasing
that the CQ approach benefits the codec’s performance.

3) Bit allocation between the LPC and NWC modules:
Since the proposed CQ method is capable of assigning differ-
ent bits to the LPC and NWC modules dynamically, i.e., in a
frame-by-frame manner, we analyze its impact in more detail.
In the mid-range bitrate setting, Fig. 9 shows the amount of
bits assigned to both modules per frame (b/f). First of all, we
observe that the dynamic bit allocation scheme indeed adjusts
the LPC and NWC bitrates over time. Because of the CQ-
enabled dynamic bit allocation, our system is able to compress
silent frames more efficiently: by allocating just a few more
bits to LPC, it saves a lot more bits from the NWC module
for residual coding, as shown in the crimson-colored boxed
areas in Fig. 9. However, it still requires a significant amount
of bits to even represent those near-silent frames, which can
be further optimized by voice activity detection. Finally, it
appears that NWC is less efficient for fricatives (e.g., f and
S ) and affricates (e.g., tS ). TABLE V shows the overall bit
allocation among different modules. In the low bitrate case, it
is worth noting that CQ uses 58 b/f or 1.93 kbps, differently
from AMR-WB’s standard, 2.4 kbps.

4) Bit allocation between the two NWC modules in Model-
IV: To find the optimal bit allocation between two NWC
modules, we first conduct an ablation analysis on 3 different
bit allocation choices. In Fig. 10, both the SNR and PESQ
scores degrade when the second NWC uses 33.3% more bits
than the first one. Among these 3 choices, the highest PESQ
score is obtained when the first NWC module uses 33.3% more
bits. In practice, the bit allocation is automatically determined
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TABLE V: Bit allocation among coding components.

Bitrate Modes LPC Coefficients LPC Residual Total
(kbps) (bits / frame) (bits / frame) (bits / frame)

∼ 11.77 58 295 353
∼ 19.20 74 502 576
∼ 30.72 74 486+384 944

33% more bits
for codec-1

Same bits
for both codecs

33% more bits
for codec-2
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Fig. 10: Ablation analysis on bit allocation schemes between
codec-1 and codec-2 in Model-IV at 32 kbps.

during the optimization process. In TABLE V, for example,
the bit ratio between two NWC modules of Model-IV in the
high bitrate case is about 486 : 384 ≈ 55.9 : 44.1, in accord
with the observation from the ablation analysis that the first
module should use more bits.

G. Complexity and Delay

The proposed NWC model is with 0.35 million parameters,
a half of which is for the decoder. Hence, in 32 kbps with two
NWC modules for residual coding, the model size totals 0.7M
parameters, with the decoder size of 0.35M. Even though our
decoder is still not as compact as those in traditional codecs,
it is 100× smaller than a WaveNet decoder.

Aside from the model size, we investigate the codec’s
delay and the execution induced latency. The codec will have
algorithmic delay if it relies on future samples to predict the
current sample. The processing time during the encoding and
decoding processes also adds up to the runtime overhead.

1) Algorithmic delay: The delay of our system is defined
by the frame size: the first sample of a frame can be processed
only after the entire frame is buffered: 1024/16000 = 64ms.
Causal convolution can minimize such delay at the expense of
the reduced speech quality, because it only uses past samples.

2) Analysis of the execution time: The execution time
is another important factor to be considered for real-time
communications. The bottom line is that the execution of the
encoding and decoding processes is expected to be within
the duration of the hop length so as not to lead to execution
induced latency. For example, WaveNet codec [20] minimizes
the system delay using causal convolution, but its processing
time, though not reported, can be rather high as it is an
autoregressive model with over 20 million parameters. TABLE
VI lists the execution time ratio of our models. The ratio
(in percentage) is defined as the execution time to encode
and decode the test signals divided by the duration of those

TABLE VI: Execution time ratios during model inference (%).

Hardware 0.45M 0.35M 0.45M×2 0.35M×2

1× Tesla V100 12.49 13.38 20.69 21.12
1× Tesla K80 24.45 22.53 39.42 38.82

8× CPU cores 20.76 18.91 35.17 33.80
1× CPU core 46.88 42.44 87.38 80.21

signals. Meanwhile, Kankanahalli’s model requires 4.78ms to
encode and decode a hop length of 30ms on an NVIDIA®

GeForce® GTX 1080 Ti GPU, and 21.42ms on an Intel®

CoreTM i7-4970K CPU (3.8GHz), which amount to 15.93%
and 71.40% of the execution time ratio, respectively [38]. Our
small-sized models (0.45M and 0.35M) on both CPU (Intel®

Xeon® Processor E5-2670 V3 2.3GHz) and GPU run faster
than Kankanahali’s, while the direct comparison is not fair due
to the different computing environment. The CMRL models
with two NWC modules require more execution time. Note
that all our models compared in this test achieved the real-time
processing goal as their ratios are under 100%. The proposed
NWC with 0.35 million parameters runs faster on CPUs than
its predecessor [25][26] with 0.45 million parameters, although
the comparison is not consistent on GPUs, due to TensorFlow’s
optimization effects at runtime.

3) Implementation notes and limitations: While the pro-
posed model noticeably reduces the decoding time and mem-
ory footprint compared to our previous models and the
WaveNet decoder, it may not be ready to directly meet real-
world requirements. For example, while our neural codecs
can compete with or outperform AMR-WB and Opus, more
recent codecs, such as EVS, show comparable performance
to AMR-WB’s highest bitrate mode (23.05kbps) at a much
lower bitrate (9.6kbps). Furthermore, it is also desirable if
a codec’s perceptual quality is robust to the packet loss for
communication applications, which is something our study
relegates to future work. In addition, our neural codec can
be implemented in a more hardware-friendly fashion, so as
to allow the processor to handle multiple other tasks. One
promising direction is to quantize the neural network. For
example, instead of using the single-precision (32 bit) floating
points to represent model weights, we can represent each
weight by one of 255 values (8-bit quantization), which
enables much simpler arithmetic operations during inference.
Furthermore, depending on the model architecture, pruning
away less important weights is a sensible method to compress
a network. Investigating these network compression methods
for our codecs is beyond the scope of this paper, but it has
been observed that quantization and pruning bring little to no
degradation to neural networks for speech recognition [51].
The recently proposed PercepNet architecture also showed
high-quality, real-time speech enhancement is possible using
less than 5% of a CPU core for speech enhancement [52]. The
current system’s algorithmic delay is 64ms due to its frame-by-
frame processing. Ideally, causal convolution can be employed
to minimize such a delay for real-time applications, which we
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leave for future work.

V. CONCLUDING REMARKS

Recent neural waveform codecs have outperformed the
conventional codecs in terms of coding efficiency and speech
quality, at the expense of model complexity. We proposed a
scalable and lightweight neural acoustic processing unit for
waveform coding. Our smallest model contains only 0.35 mil-
lion parameters whose decoder with 0.12 million parameters
is more than 160× smaller than the WaveNet based codec.
Having a compact design as a neural network, by incorporating
a trainable LPC analyzer and residual cascading, our models
reconstruct clean English speech samples with the quality on
par with or superior to that from standardized codecs. Ad-
mittedly, these standardized codecs are more computationally
efficient and have reasonably well performed from narrow
to full band scenarios already. It is still highly desired if
these standalone DSP components can be reformulated into
a lightweight but end-to-end trainable format for a full neural
speech processing pipeline. To that end, the proposed system
serves a candidate as it operates in a frame-wise manner with
the processing time less than the frame length, even with a
less optimized python-based implementations.

The proposed system is still computationally heavier than
traditional speech codecs. Therefore, running the model in
embedded systems with limited computational resources may
require further model compression, such as parameter quan-
tization and pruning. Although the neural waveform codec is
generic and not contingent upon language specific priors, its
generalizability to different languages and noisy and reverber-
ant acoustic environments is not guaranteed, especially if the
model sizes are relatively small.

We open-sourced the project. The source code and sound ex-
amples can be found at: https://saige.sice.indiana.edu/research-
projects/hybrid-neural-speech-coding.
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